الأمثلة

,
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
اضرب في .
خطوة 2.1.2
أعِد كتابة في صورة زائد
خطوة 2.1.3
طبّق خاصية التوزيع.
خطوة 2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
اقسِم كل حد في على .
خطوة 4.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.2.1.2
اقسِم على .
خطوة 5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
اطرح من كلا المتعادلين.
خطوة 6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 7
أوجِد قيم التي ينتج عنها وجود قيمة في الفترة .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
الفترة لا تتضمن . إذن هي ليست جزءًا من الحل النهائي.
ليست في الفترة
خطوة 7.2
الفترة تتضمن .
إدخال مسألتك
يتطلب Mathway استخدام JavaScript ومتصفح حديث.