حساب التفاضل والتكامل الأمثلة
,
خطوة 1
إذا كانت متصلة في الفترة وقابلة للاشتقاق في ، إذن يوجد على الأقل عدد حقيقي واحد في الفترة حيث إن . وتعبر نظرية القيمة المتوسطة عن العلاقة بين ميل المماس للمنحنى عند وميل الخط المار بالنقطتين و.
إذا كانت متصلة في
وإذا كانت قابلة للاشتقاق على ،
إذن، توجد نقطة واحدة على الأقل، في : .
خطوة 2
خطوة 2.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2.2
متصلة على .
الدالة متصلة.
الدالة متصلة.
خطوة 3
خطوة 3.1
أوجِد المشتق الأول.
خطوة 3.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.2
احسِب قيمة .
خطوة 3.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.1.2.3
اضرب في .
خطوة 3.1.3
احسِب قيمة .
خطوة 3.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.1.3.3
اضرب في .
خطوة 3.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 3.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.4.2
أضف و.
خطوة 3.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 4
خطوة 4.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4.2
متصلة على .
الدالة متصلة.
الدالة متصلة.
خطوة 5
الدالة قابلة للاشتقاق على لأن المشتق متصل على .
الدالة قابلة للاشتقاق.
خطوة 6
تستوفي الشرطين لنظرية القيمة المتوسطة. إنها متصلة على وقابلة للاشتقاق على .
متصلة على وقابلة للاشتقاق على .
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط كل حد.
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
اضرب في .
خطوة 7.2.2
بسّط بطرح الأعداد.
خطوة 7.2.2.1
اطرح من .
خطوة 7.2.2.2
اطرح من .
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 8
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
خطوة 8.2.1
بسّط كل حد.
خطوة 8.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 8.2.1.2
اضرب في .
خطوة 8.2.1.3
اضرب في .
خطوة 8.2.2
بسّط عن طريق الجمع والطرح.
خطوة 8.2.2.1
أضف و.
خطوة 8.2.2.2
اطرح من .
خطوة 8.2.3
الإجابة النهائية هي .
خطوة 9
خطوة 9.1
بسّط .
خطوة 9.1.1
بسّط بَسْط الكسر.
خطوة 9.1.1.1
اضرب في .
خطوة 9.1.1.2
أضف و.
خطوة 9.1.2
بسّط القاسم.
خطوة 9.1.2.1
اضرب في .
خطوة 9.1.2.2
أضف و.
خطوة 9.1.3
اقسِم على .
خطوة 9.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 9.2.1
اطرح من كلا المتعادلين.
خطوة 9.2.2
اطرح من .
خطوة 9.3
اقسِم كل حد في على وبسّط.
خطوة 9.3.1
اقسِم كل حد في على .
خطوة 9.3.2
بسّط الطرف الأيسر.
خطوة 9.3.2.1
ألغِ العامل المشترك لـ .
خطوة 9.3.2.1.1
ألغِ العامل المشترك.
خطوة 9.3.2.1.2
اقسِم على .
خطوة 9.3.3
بسّط الطرف الأيمن.
خطوة 9.3.3.1
احذِف العامل المشترك لـ و.
خطوة 9.3.3.1.1
أخرِج العامل من .
خطوة 9.3.3.1.2
ألغِ العوامل المشتركة.
خطوة 9.3.3.1.2.1
أخرِج العامل من .
خطوة 9.3.3.1.2.2
ألغِ العامل المشترك.
خطوة 9.3.3.1.2.3
أعِد كتابة العبارة.
خطوة 9.3.3.2
انقُل السالب أمام الكسر.
خطوة 10
يوجد خط مماس عند الموازي للخط المار عبر نقطتي النهاية و.
يوجد خط مماس عند الموازي للخط المار عبر نقطتي النهاية و
خطوة 11