حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
أوجِد المشتقة.
خطوة 1.4.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.5
بسّط.
خطوة 1.5.1
أضف و.
خطوة 1.5.2
أعِد ترتيب الحدود.
خطوة 2
مثّل كل متعادل بيانيًا. الحل هو قيمة x لنقطة التقاطع.
خطوة 3
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
بسّط كل حد.
خطوة 4.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.1.2
اضرب في .
خطوة 4.2.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.1.4
اضرب في .
خطوة 4.2.2
بسّط بجمع الأعداد.
خطوة 4.2.2.1
أضف و.
خطوة 4.2.2.2
أضف و.
خطوة 4.2.3
الإجابة النهائية هي .
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
ارفع إلى القوة .
خطوة 5.2.1.4
اضرب في .
خطوة 5.2.2
بسّط بجمع الأعداد.
خطوة 5.2.2.1
أضف و.
خطوة 5.2.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 6
بما أن علامة المشتق الأول تغيّرت من موجب إلى سالب حول ، إذن توجد نقطة تحوّل عند .
خطوة 7
خطوة 7.1
أوجِد لإيجاد الإحداثي الصادي لـ .
خطوة 7.1.1
استبدِل المتغير بـ في العبارة.
خطوة 7.1.2
بسّط .
خطوة 7.1.2.1
احذِف الأقواس.
خطوة 7.1.2.2
بسّط كل حد.
خطوة 7.1.2.2.1
ارفع إلى القوة .
خطوة 7.1.2.2.2
اضرب في .
خطوة 7.1.2.2.3
ارفع إلى القوة .
خطوة 7.1.2.2.4
اضرب في .
خطوة 7.1.2.3
بسّط عن طريق الجمع والطرح.
خطوة 7.1.2.3.1
اطرح من .
خطوة 7.1.2.3.2
أضف و.
خطوة 7.1.2.3.3
أضف و.
خطوة 7.2
اكتب الإحداثيين و بصيغة النقطة.
خطوة 8