حساب التفاضل والتكامل الأمثلة

تحقق مما إذا كانت قابلة للاشتقاق على مدى فترة
,
خطوة 1
أوجِد المشتق.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
اضرب في .
خطوة 1.1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.3
أضف و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
أوجِد ما إذا كان المشتق متصلاً على .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2.2
متصلة على .
الدالة متصلة.
الدالة متصلة.
خطوة 3
الدالة قابلة للاشتقاق على لأن المشتق متصل على .
الدالة قابلة للاشتقاق.
خطوة 4
إدخال مسألتك
يتطلب Mathway استخدام JavaScript ومتصفح حديث.