الجبر الأمثلة
[122220032]⎡⎢⎣122220032⎤⎥⎦
خطوة 1
خطوة 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 11 by its cofactor and add.
خطوة 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
خطوة 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
خطوة 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|2032|∣∣∣2032∣∣∣
خطوة 1.1.4
Multiply element a11a11 by its cofactor.
1|2032|1∣∣∣2032∣∣∣
خطوة 1.1.5
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|2232|∣∣∣2232∣∣∣
خطوة 1.1.6
Multiply element a21a21 by its cofactor.
-2|2232|−2∣∣∣2232∣∣∣
خطوة 1.1.7
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|2220|∣∣∣2220∣∣∣
خطوة 1.1.8
Multiply element a31a31 by its cofactor.
0|2220|0∣∣∣2220∣∣∣
خطوة 1.1.9
Add the terms together.
1|2032|-2|2232|+0|2220|1∣∣∣2032∣∣∣−2∣∣∣2232∣∣∣+0∣∣∣2220∣∣∣
1|2032|-2|2232|+0|2220|1∣∣∣2032∣∣∣−2∣∣∣2232∣∣∣+0∣∣∣2220∣∣∣
خطوة 1.2
اضرب 00 في |2220|∣∣∣2220∣∣∣.
1|2032|-2|2232|+01∣∣∣2032∣∣∣−2∣∣∣2232∣∣∣+0
خطوة 1.3
احسِب قيمة |2032|∣∣∣2032∣∣∣.
خطوة 1.3.1
يمكن إيجاد محدد المصفوفة 2×22×2 باستخدام القاعدة |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1(2⋅2-3⋅0)-2|2232|+01(2⋅2−3⋅0)−2∣∣∣2232∣∣∣+0
خطوة 1.3.2
بسّط المحدد.
خطوة 1.3.2.1
بسّط كل حد.
خطوة 1.3.2.1.1
اضرب 22 في 22.
1(4-3⋅0)-2|2232|+01(4−3⋅0)−2∣∣∣2232∣∣∣+0
خطوة 1.3.2.1.2
اضرب -3−3 في 00.
1(4+0)-2|2232|+01(4+0)−2∣∣∣2232∣∣∣+0
1(4+0)-2|2232|+01(4+0)−2∣∣∣2232∣∣∣+0
خطوة 1.3.2.2
أضف 44 و00.
1⋅4-2|2232|+01⋅4−2∣∣∣2232∣∣∣+0
1⋅4-2|2232|+01⋅4−2∣∣∣2232∣∣∣+0
1⋅4-2|2232|+01⋅4−2∣∣∣2232∣∣∣+0
خطوة 1.4
احسِب قيمة |2232|∣∣∣2232∣∣∣.
خطوة 1.4.1
يمكن إيجاد محدد المصفوفة 2×22×2 باستخدام القاعدة |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
1⋅4-2(2⋅2-3⋅2)+01⋅4−2(2⋅2−3⋅2)+0
خطوة 1.4.2
بسّط المحدد.
خطوة 1.4.2.1
بسّط كل حد.
خطوة 1.4.2.1.1
اضرب 22 في 22.
1⋅4-2(4-3⋅2)+01⋅4−2(4−3⋅2)+0
خطوة 1.4.2.1.2
اضرب -3−3 في 22.
1⋅4-2(4-6)+01⋅4−2(4−6)+0
1⋅4-2(4-6)+01⋅4−2(4−6)+0
خطوة 1.4.2.2
اطرح 66 من 44.
1⋅4-2⋅-2+01⋅4−2⋅−2+0
1⋅4-2⋅-2+01⋅4−2⋅−2+0
1⋅4-2⋅-2+01⋅4−2⋅−2+0
خطوة 1.5
بسّط المحدد.
خطوة 1.5.1
بسّط كل حد.
خطوة 1.5.1.1
اضرب 44 في 11.
4-2⋅-2+04−2⋅−2+0
خطوة 1.5.1.2
اضرب -2−2 في -2−2.
4+4+04+4+0
4+4+04+4+0
خطوة 1.5.2
أضف 44 و44.
8+08+0
خطوة 1.5.3
أضف 88 و00.
88
88
88
خطوة 2
Since the determinant is non-zero, the inverse exists.
خطوة 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[122100220010032001]⎡⎢⎣122100220010032001⎤⎥⎦
خطوة 4
خطوة 4.1
Perform the row operation R2=R2-2R1R2=R2−2R1 to make the entry at 2,12,1 a 00.
خطوة 4.1.1
Perform the row operation R2=R2-2R1R2=R2−2R1 to make the entry at 2,12,1 a 00.
[1221002-2⋅12-2⋅20-2⋅20-2⋅11-2⋅00-2⋅0032001]⎡⎢⎣1221002−2⋅12−2⋅20−2⋅20−2⋅11−2⋅00−2⋅0032001⎤⎥⎦
خطوة 4.1.2
بسّط R2R2.
[1221000-2-4-210032001]⎡⎢⎣1221000−2−4−210032001⎤⎥⎦
[1221000-2-4-210032001]⎡⎢⎣1221000−2−4−210032001⎤⎥⎦
خطوة 4.2
Multiply each element of R2R2 by -12−12 to make the entry at 2,22,2 a 11.
خطوة 4.2.1
Multiply each element of R2R2 by -12−12 to make the entry at 2,22,2 a 11.
[122100-12⋅0-12⋅-2-12⋅-4-12⋅-2-12⋅1-12⋅0032001]⎡⎢
⎢⎣122100−12⋅0−12⋅−2−12⋅−4−12⋅−2−12⋅1−12⋅0032001⎤⎥
⎥⎦
خطوة 4.2.2
بسّط R2R2.
[1221000121-120032001]⎡⎢
⎢⎣1221000121−120032001⎤⎥
⎥⎦
[1221000121-120032001]⎡⎢
⎢⎣1221000121−120032001⎤⎥
⎥⎦
خطوة 4.3
Perform the row operation R3=R3-3R2R3=R3−3R2 to make the entry at 3,23,2 a 00.
خطوة 4.3.1
Perform the row operation R3=R3-3R2R3=R3−3R2 to make the entry at 3,23,2 a 00.
[1221000121-1200-3⋅03-3⋅12-3⋅20-3⋅10-3(-12)1-3⋅0]⎡⎢
⎢⎣1221000121−1200−3⋅03−3⋅12−3⋅20−3⋅10−3(−12)1−3⋅0⎤⎥
⎥⎦
خطوة 4.3.2
بسّط R3R3.
[1221000121-12000-4-3321]⎡⎢
⎢⎣1221000121−12000−4−3321⎤⎥
⎥⎦
[1221000121-12000-4-3321]⎡⎢
⎢⎣1221000121−12000−4−3321⎤⎥
⎥⎦
خطوة 4.4
Multiply each element of R3R3 by -14−14 to make the entry at 3,33,3 a 11.
خطوة 4.4.1
Multiply each element of R3R3 by -14−14 to make the entry at 3,33,3 a 11.
[1221000121-120-14⋅0-14⋅0-14⋅-4-14⋅-3-14⋅32-14⋅1]⎡⎢
⎢⎣1221000121−120−14⋅0−14⋅0−14⋅−4−14⋅−3−14⋅32−14⋅1⎤⎥
⎥⎦
خطوة 4.4.2
بسّط R3.
[1221000121-12000134-38-14]
[1221000121-12000134-38-14]
خطوة 4.5
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
خطوة 4.5.1
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
[1221000-2⋅01-2⋅02-2⋅11-2(34)-12-2(-38)0-2(-14)00134-38-14]
خطوة 4.5.2
بسّط R2.
[122100010-12141200134-38-14]
[122100010-12141200134-38-14]
خطوة 4.6
Perform the row operation R1=R1-2R3 to make the entry at 1,3 a 0.
خطوة 4.6.1
Perform the row operation R1=R1-2R3 to make the entry at 1,3 a 0.
[1-2⋅02-2⋅02-2⋅11-2(34)0-2(-38)0-2(-14)010-12141200134-38-14]
خطوة 4.6.2
بسّط R1.
[120-123412010-12141200134-38-14]
[120-123412010-12141200134-38-14]
خطوة 4.7
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
خطوة 4.7.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅10-2⋅0-12-2(-12)34-2(14)12-2(12)010-12141200134-38-14]
خطوة 4.7.2
بسّط R1.
[1001214-12010-12141200134-38-14]
[1001214-12010-12141200134-38-14]
[1001214-12010-12141200134-38-14]
خطوة 5
The right half of the reduced row echelon form is the inverse.
[1214-12-12141234-38-14]